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Abstract

Based on (J.Approx. Theory 86 (1996) 240), we prove that the integer shifts of amultivariate block-
wise polynomial�(x) which is compactly supported and m-refinable form a Riesz basis if and only
if �(x)= cB(x− n− l

m−1 |v1, v2, . . . , vk). Heren, l ∈ Zs , c �= 0 is a constant,B(x|v1, v2, . . . , vk)
is a multivariate box spline and the matrix(v1, v2, . . . , vk) is unimodular.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

For an integerm�2, a compactly supported function� is calledm-refinableif there
exists a finite sequence{an} such that

�(x) =
∑

an�(mx − n), x ∈ Rs . (1)
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A function� is calledrefinableif it is m-refinable for somem�2. A Laurent polynomial
A(z) is said to bem-closedif A(zm)/A(z) is a Laurent polynomial. Similarly,A(z) is said
to bepolynomial m-closedif bothA(z) andA(zm)/A(z) are polynomials.
In [6], Lawton et al. found the characterization of a compactly supported refinable uni-

variate spline�(x) and proved that�(x) ism-refinable if and only if there exists a charac-
terization polynomialp(z) = ∑

n pnz
n such thatp(z)(z − 1)k+1 ism-closed and�(x) =∑

n pnB(x − n− l
m−1), whereB(x) is a B-spline andl is an integer. This result has been

extended to multivariate cases by Sun[8] (see Theorem1). Goodman gave a summary on
refinable splines(include refinable vector splines) in[3]. The authors of[6] also pointed out
that the

{
�(x − n)

}
n∈Z

form a Riesz basis if and only ifp(z) is a monomial.
For v1, v2, . . . , vk ∈ Zs , one can define as-dimensional box splineB(x|v1, v2, . . . , vk)

according to[7]. Hereafter, for convenience letB(x) = B(x|v1, v2, . . . , vk).
A function� is called ablockwise polynomialif its support is the union of some simplexes

and it is a polynomial on every simplex. For a more precise definition refer to[8]. P(D)
is said to be ahomogeneous differential operatorif P(x), x ∈ Rs , is a homogeneous
polynomial. Sun proved the following theorem:

Theorem 1(Sun[8]). Let s�2 and� be a compactly supported blockwise polynomial.
Then� is m-refinable if and only if

�(x) = P(D)

(∑
n

anB

(
x − n− l

m− 1

))
, (2)

whereP(D) is a homogeneous differential operator,
(∑

n anz
n
)∏k

j=1(z
vj −1) ism-closed,

B(x) is a box spline,and l is an integer vector.

Sun did not answer under what condition the integer shifts of the compactly supported
refinable spline form a Riesz basis, which is important to the construction of MRA. In this
paper, we give this answer (see Theorem2).
Notation: For n, l∈ Zs , thenn < l denotesnj < lj , j = 1,2, . . . , s; andn > l andn = l

are defined similarly;x+ = ((x1)+, (x2)+, . . . , (xs)+). Let T s = {z = (z1, z2, . . . , zs) ∈
Cs ||z1| = |z2| = · · · = |zs | = 1}.

2. Main result

Let k�s, v1, v2, . . . , vk ∈ Zs . We say the matrixv = (v1, v2, . . . , vk) is unimodular
if any matrix formed by anys linearly independent column vectors of the matrixv has
determinant value±1.

Theorem 2. Let s�2 and� be a compactly supported blockwise polynomial. Then� is
m-refinable and its integer shifts{�(x − n)}n∈Zs form a Riesz basis if and only if

�(x) = cB

(
x − n− l

m− 1

)
, (3)
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whereB(x) is a box spline,(v1, v2, . . . , vk) is unimodular,c �= 0 is a constant,and
n, l ∈ Zs .

2.1. Preliminaries

Lemma 3. LetB(x) be a box spline andx0 ∈ Rs . Then{B(x − x0 − n)}n∈Zs form a Riesz
basis if and only if the matrix(v1, v2, . . . , vk) is unimodular.

This lemma can be obtained from[2,1,4,5, Theorem 5.1].
In this subsection all the ‘m-closed’mean ‘polynomialm-closed’.

Proposition 4. If p(z) is m-closed,thenp(z) ismk-closed,wherek ∈ N.

Lemma 5. Let s = 1 andp(z) be m-closed,thenp(z) has no root on the unit circle if and
only if p(z) is a non-zero monomial.

One can prove this lemma based on[6, Definition 2.1, Lemma 2.3].
We say thatp(z) is monomial about variablez1 if it is the product of a monomial inz1

and a polynomial inz2, . . . , zs .

Lemma 6. Lets > 1andz ∈ Cs . If p(z) ism-closedand is notmonomial about variablez1,
then there existk ∈ N, and a constant� ∈ C, where|�| = 1, such thatp(z1,z2,. . . ,zs−1,�)
ismk-closed and is not monomial about variablez1.

Proof. Sincep(z) is not monomial about variablez1, p(z) = ∑
l∈� pl(zs)

∏s−1
j=1 z

lj
j

holds, where� = {l = (l1, l2, . . . , ls−1) ∈ Zs−1|pl(zs) �= 0}, and {l1|l ∈ �, l =
(l1, l2, . . . , ls−1)} is a finite set with at least two elements. If the polynomialQ(zs) =∏
l∈� pl(zs) has degreen, then it has at mostn different roots. Forkwith mk − 1> n, the

polynomialzm
k−1

s − 1 hasmk − 1 different roots, and so has a root� such thatQ(�) �= 0,
i.e., for all l ∈ �, pl(�) �= 0. So{l1|pl(�) �= 0, l ∈ �} is a finite set with at least two

elements. Thenp(z1, z2, . . . , zs−1, �) = ∑
l∈� pl(�)

∏s−1
j=1 z

lj
j is not a monomial about

variablez1.
Sincep(z) ism-closed,p(z) must bemk-closed. So

p(zm
k

1 , zm
k

2 , . . . , zm
k

s−1, �)

p(z1, z2, . . . , zs−1, �)
= p(zm

k

1 , zm
k

2 , . . . , zm
k

s−1, �
mk )

p(z1, z2, . . . , zs−1, �)

is a polynomial, that is,p(z1, z2, . . . , zs−1, �) ismk-closed. �

Proposition 7. If q(z) is an m-closed polynomial which is not a monomial,then it has a
zero inT s .

Proof. Sinceq(z) is not monomial, there is a variablezi such thatq(z) is not a monomial
about variablezi . Let p(z) = q(zi, z2, . . . , zi−1, z1, zi+1, . . . , zs), thenp(z) ism-closed
andp(z) is notmonomial about variablez1. Using Lemma6repeatedly, there existks, ks−1,
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. . . , k2 ∈ N, �s ,�s−1, . . . ,�2 ∈ C and |�s | = |�s−1| = · · · = |�2| = 1, such that

p(z1,�2,�3, . . . ,�s) is m
∏s
j=2 kj -closed and is not monomial. And from Lemma5, there

exists�1, |�1| = 1, such that

p(�1,�2,�3, . . . ,�s) = 0.

For� = (�i ,�2, . . . ,�i−1,�1,�i+1, . . . ,�s), obviously,q(�) = 0 holds. �

Proposition 8. For t = (t1, t2, . . . , ts) ∈ Zs , p(t) = ∏a
j=1 tnj − c is prime,wherec �= 0

is a constant andnj �= ni , wheni �= j .

Proof. If p(t) is not prime, thenp(t) = ∏l
k=1pk(t), wherepk(t), k = 1,2, . . . , l, are

prime and have the following two properties: (a) the maximal degree ofpk(t) in each
variable is 1; (b) forj �= i,pj (t) andpi(t) have no common variable. The above properties
can be proved by reduction to absurdity. Ifpk(t) does not satisfy (a) or (b), then the degree
of
∏l
k=1pk(t) in some variable must be larger than 1. Consequently there existq1(t), q2(t)

andq3(t) none of which include the variabletn1, such that
∏a
j=1 tnj − c = q2(t)q1(t)tn1 −

q2(t)q3(t). Putting tn1 = 0 givesq2(t)q3(t) = c. Clearly,q2(t) andq3(t) are constant.
So
∏a
j=1 tnj − c cannot be written the production of the two nontrivial polynomials. This

contradicts the assumption.�

Proposition 9. If l �= 0 ∈ Zs andp(z) = (z(l)+ −z(−l)+), thenp(zm)/p(z) is a polynomial
and its every prime factor has a root onT s .

Proof. We can see thatp(zm)/p(z) is a polynomial by verifying directly

p(zm)/p(z) =
∑m−1

j=0
((z(−l)+)m−1−j(z(l)+)j ) =

∏m−1

j=1
(z(l)+ − �j z

(−l)+),

where�j = exp(−i2�j/m), j = 1,2, . . . , m − 1. Let us prove the last assertion. There
are three cases:(−l)+ = 0; (l)+ = 0; (l)+ �= 0 and(−l)+ �= 0. We only prove the first
case, as the others are similar. Now,

p(zm)/p(z) =
∏m−1

j=1
(z(l)+ − �j ).

We only need to prove that any prime factor ofr(z) = z(l)+ − �j has a root onT s for
j = 1,2, . . . , m − 1. Obviouslyl+ �= 0 sinel �= 0 and(−l)+ = 0. Assume the number
of elements in the set

{
lj �= 0, 1�j�s

}
is a and ln1, ln2, . . . , lna denote these elements.

Thenz(l)+ = z
ln1
n1 z

ln2
n2 · · · zlnana . Let� be the least common multiple ofln1, ln2, . . . , lna , zn1 =

�
1/ln1
j t

�/ln1
n1 , zn2 = t

�/ln2
n2 , zn3 = t

�/ln3
n3 , . . . , zna = t

�/lna
na , and letzj = tj whenj �= nk, k =

1,2, . . . , a. Then

r(z(t)) = (z(l)+ − �j ) = �j ((tn1 · · · tna )� − 1)= �j
∏�−1

k=0

(∏a

p=1
tnp − �k

)
,

where�k = exp(−i2�k/�), k = 0, 1, . . . ,� − 1. Puttingtn1 = �k, tn2 = tn3 = · · · = tna =
1, shows that

∏a
p=1 tnp − �k has root onT s for k = 0, 1, . . . ,� − 1. From Proposition8
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we know
∏a
p=1 tnp − c is prime whenc �= 0 is a constant. So any prime factor ofr(z(t))

in variablet has a root onT s . Clearly any prime factor ofr(z) must be a product of some
prime factors ofr(z(t)). Hence, due to the equivalence ofz ∈ T s andt ∈ T s , any prime
factor ofr(z) has a root onT s . �

Lemma 10. Let p(z) be a non-zero polynomial,vj �= 0 ∈ Zs , j = 1,2, . . . , k and
p(z)

∏k
j=1(z

(vj )+ − z(−vj )+) be m-closed,thenp(z) has no root onT s if and only ifp(z)
is a monomial.

Proof. The sufficiency is apparent and we only need to prove the necessity. Letqj (z) =
(z(vj )+ − z(−vj )+). From Proposition9,

∏k
j=1

qj (z
m)

qj (z)
is a polynomial and any of its prime

factors has a root onT s . So p(z)and
∏k
j=1

qj (z
m)

qj (z)
have no common factor. On the other

hand, from the condition thatp(z)
∏k
j=1 qj (z) ism-closed, we know there is a polynomial

r(z) such that

r(z) = p(zm)
∏k
j=1 qj (z

m)

p(z)
∏k
j=1 qj (z)

=
p(zm)

∏k
j=1

qj (z
m)

qj (z)

p(z)
.

Therefore,p(zm)/p(z) is a polynomial, that is,p(z) ism-closed. From Proposition7,p(z)
must be a monomial.�

2.2. Proof of Theorem 2

The sufficiency part of the theorem is apparent from Lemma3, so we only need to prove
the necessity.
Based on the fact that

∑
n B(x − n) is a constant and[5, Theorem 5.1](or [9, Theorem

1.1]), we know the shifts of� cannot form aRiesz basis when the order of the homogeneous
differential operatorP(D) is not zero.
When the order of the homogeneous differential operatorP(D) is zero, from Theo-

rem 1, there existM,N ∈ Zs such that�(x) = ∑
N�n�M anB(x − n − l

m−1), l ∈
Zs . Let A(z) = ∑

N�n�M anz
n andC(z) = ∑

N�n�M anz
n+(−N)+ , thenA(z) =

z−(−N)+C(z). ThereforeC(z)
∏k
j=1(z

(vj )+ − z(−vj )+) is a polynomial which ism-closed

becauseA(z)
∏k
j=1(z

vj − 1) ism-closed.
Now, let us prove that(v1, v2, . . . , vk) is unimodular. If it is not unimodular, from

Lemma3, {B(x − n)}n∈Zs is not a Riesz basis. Thus
∑
n∈Zs

∣∣∣B̂(� + 2n�)
∣∣∣2 has a root.

Since
∑
n∈Zs

∣∣∣B̂(� + 2n�)
∣∣∣2 is bounded and continuous, and|C(exp(−i�))| is bounded

too, we obtain that∑
n∈Zs

∣∣∣�̂(�+2n�)
∣∣∣2=|A(z)|2

∑
n∈Zs

∣∣∣B̂(�+2n�)
∣∣∣2

= |C(z)|2
∑

n∈Zs

∣∣∣B̂(�+2n�)
∣∣∣2
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has a root. Thus
{
�(x − n)

}
n∈Zs

is not a Riesz basis, which contradicts the condition
that

{
�(x − n)

}
n∈Zs

forms a Riesz basis. So(v1, v2, . . . , vk) is unimodular. Furthermore,
{B(x − n)}n∈Zs is a Riesz basis from Lemma3.
From the above discussion, the sufficient and necessary condition that

{
�(x−n)}n∈Zs

forms a Riesz basis is thatC(z) has no root onT s . BecauseC(z) is polynomialm-closed,
from Lemma10, C(z) is a non-zero monomial, i.e.,A(z) is a monomial. So�(x) =
cB(x − n− l

m−1), wherec �= 0 is a constant. �
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