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Abstract

Based on (J. Approx. Theory 86 (1996) 240), we prove that the integer shifts of a multivariate block-
wise polynomialg(x) which is compactly supported and m-refinable form a Riesz basis if and only
if pC0)=cB(x —n— —Lylv, va. ..., vp). Heren, I € Z%, ¢ # Ois a constantB (x|vy, vy, . .. , vg)
is a multivariate box spline and the matfix, v, ..., vg) is unimodular.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

For an integern > 2, a compactly supported functiah is calledm-refinableif there
exists a finite sequende, } such that

¢(x) = Za,,(]ﬁ(mx —n), xeR. Q)
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A function ¢ is calledrefinableif it is m-refinable for some: >2. A Laurent polynomial
A(z) is said to ban-closedf A(z")/A(z) is a Laurent polynomial. Similarly (z) is said
to bepolynomial m-closed both A(z) andA(z)/A(z) are polynomials.

In [6], Lawton et al. found the characterization of a compactly supported refinable uni-
variate splingp(x) and proved thap(x) is m-refinable if and only if there exists a charac-
terization polynomiap(z) = Y, pnz" such thatp(z)(z — 1)¥*1 is m-closed andh(x) =
> PnBlx —n— ml_l), whereB(x) is a B-spline and is an integer. This result has been
extended to multivariate cases by §8h(see Theorem). Goodman gave a summary on
refinable splines(include refinable vector splinegBinThe authors of6] also pointed out
that the{¢(x —n)} _, form a Riesz basis if and only jf(z) is a monomial.

Forvi, vp, ..., v € Z°, one can define sa-dimensional box splin8(x|v1, vy, ..., vk)
according td7]. Hereafter, for convenience I8(x) = B(x|v1, v, ..., k).

Afunction ¢ is called eblockwise polynomiaf its support is the union of some simplexes
and it is a polynomial on every simplex. For a more precise definition ref@]ta® (D)
is said to be ehomogeneous differential operatdr P(x), x € R’, is a homogeneous
polynomial. Sun proved the following theorem:

Theorem 1(Sun[8]). Lets>2 and ¢ be a compactly supported blockwise polynomial.
Theng is m-refinable if and only if

¢(x) = P(D) (Z anB <x—n—m;_1>>, )

n

whereP (D) is a homogeneous differential operat()En anz”) ]‘[’;zl(z"f —1)is m-closed,
B(x) is a box splineand | is an integer vector.

Sun did not answer under what condition the integer shifts of the compactly supported
refinable spline form a Riesz basis, which is important to the construction of MRA. In this
paper, we give this answer (see Theo2m

Notation: Forn, le Z°,thenn < Idenotes:; <1;,j =1,2,...,s;andn > landn =1
are defined similarlyy; = ((x1)+, (x2)4, ..., (xg)4). LetT* = {z = (21,22, ...,25) €
Cllzal = lza| = -+ = |z] = 1},

2. Main result
Letk>s, vy, vp, ..., v € Z°. We say the matrix = (vy, v, ..., v) iS unimodular
if any matrix formed by anys linearly independent column vectors of the matsihas

determinant value:-1.

Theorem 2. Lets >2 and ¢ be a compactly supported blockwise polynomial. Ties
m-refinable and its integer shiffe)(x — n)}, .7+ form a Riesz basis if and only if

¢(x) =cB (x —n— #> , (3

m—1
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where B(x) is a box spline,(vy, v, ..., vr) is unimodular,c # 0 is a constantand
n,leZ®.

2.1. Preliminaries

Lemma 3. Let B(x) be a box spline andy € R*. Then{B(x — xo — n)},czs form a Riesz
basis if and only if the matrixvy, vo, ..., vg) is unimodular.

This lemma can be obtained frai,1,4,5, Theorem 5.1].
In this subsection all the ‘m-closed’ mean ‘polynomiaiclosed’.

Proposition 4. If p(z) is m-closedthen p(z) is m*-closedwherek € N.

Lemma 5. Lets = 1 and p(z) be m-closedthen p(z) has no root on the unit circle if and
only if p(z) is a non-zero monomial.

One can prove this lemma based[6nDefinition 2.1, Lemma 2.3].
We say thatp(z) is monomial about variablg if it is the product of a monomial iny
and a polynomial ino, . . ., z.

Lemma 6. Lets > 1andz € C*.If p(z) ism-closed and is not monomial about variable
then there exist € N, and a constant € C, where|a| = 1, such thatp(z1,z2,. .. ,25—-1.%
is mk-closed and is not monomial about variahle

Proof. Since p(z) is not monomial about variablei, p(z) = ;e p1(zs) [152 1Zl‘

holds, whereA = {I = (I1,ls,...,li_1) € Z° Y pi(zs) # O}, and{l1]l € A, =
(I1,12, ...,1,_1)} is a finite set with at least two elements. If the polynomislz;) =
[T;en pi(z5) has degrea, then it has at most different roots. Fok with mk — 1> n, the
polynomialz;"k*1 — 1 hasm* — 1 different roots, and so has a raosuch thatQ () # 0,
i.e., foralll € A, pj(e) # 0. So{l1|p;(z) # 0,1 € A} is a finite set with at least two

_ s—1 _lj . ;
ele_ments. Thew(z1,z2, ..., 25-1,%) = Y jcp P1(®) 1"[.,.:1 zj is not a monomial about
variablez.

Sincep(z) is m-closedp(z) must bem*-closed. So
mk H‘lk mk
p(Zl 3Z2 1"'7Zs_17a) p(Zl 122 s"'vzs_l»a )
p(z1,225 05 Z5—1, ) (21,22, .5 251, )
is a polynomial, that isp(z1, z2, . . ., zs—1, %) is m*-closed. O

Proposition 7. If g(z) is an m-closed polynomial which is not a monomihgn it has a
zero inT*.

Proof. Sinceq(z) is hot monomial, there is a varialdg such thaty (z) is not a monomial
about variabley;. Let p(z) = q(zi, z2, ..., 2i—1, 21, Zi+1, - - - » Z5), thenp(z) is m-closed
andp(z) is not monomial about variablg. Using Lemméb repeatedly, there exist, ks_1,
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oo ko € N, B, By_1...., P € Cand|f,| = |f;_1] = -+ = |Pal = 1, such that

p(z1, Po, B3y .-, By is mIli=2%i _closed and is not monomial. And from LemrBathere
existsfiy, |f1] = 1, such that

p(B1. P, Bas .. ) = 0.
Fora = (f;, Ba. - ... Bi_1. B1. Biy1s - - - By), Obviously,g(x) = 0 holds. [

_Proposition 8. Fort = (r1,12,...,5;) € Z°, p(t) = ]'[j‘.zl n, — ¢ is prime,wherec # 0
is a constant and ; # n;, wheni # j.

Proof. If p(¢) is not prime, therp(t) = Hizl pr(), wherepg(t), k =1,2,...,1, are
prime and have the following two properties: (a) the maximal degregy ¢f) in each
variable is 1; (b) forj # i, p;(¢) andp; (t) have no common variable. The above properties
can be proved by reduction to absurdityp}f(r) does not satisfy (a) or (b), then the degree
of l_[;c:l pk(t) in some variable must be larger than 1. Consequently thereg@Xist g2(t)
andgs(t) none of which include the variabig,, such thaf[‘]?:1 th; — ¢ = q2(t)q1()tn; —
q2(1)q3(t). Puttingz,, = 0 givesqa(t)q3(t) = c. Clearly,g2(r) andgs(r) are constant.
So ]_[‘j"=1 ta; — ¢ cannot be written the production of the two nontrivial polynomials. This
contradicts the assumption]

Proposition 9. If/ # 0 € Z° andp(z) = (zV+ —z(=D+),thenp(z™)/p(z) is a polynomial
and its every prime factor has a root @H.

Proof. We can see thgi(z")/p(z) is a polynomial by verifying directly
m—1 . . m—1
pE@/p@ =3 (@) = [T @0 =2,

wheref; = exp(—i2nj/m), j = 1,2,...,m — 1. Let us prove the last assertion. There
are three cases-/)y = 0; ()+ = 0; ()4 # 0 and(—1);+ # 0. We only prove the first
case, as the others are similar. Now,

m—1
p@E"/p() = ]"[j:1 @D = B)).

We only need to prove that any prime factorrgt) = >+ — §; has a root orf™* for
j=121,2,...,m — 1. Obviouslyl, # 0 sinel # 0 and(—/); = 0. Assume the number

of elements in the se{le #0, 1<j<s} isaandl,,, ln,, ..., l,, denote these elements.

Iy 1 I .
Thenz O+ =z, 12,2 - .- 7, Leto be the least common multiple b, L, .. . , ln,, 20, =

10, o/l /1 o/l o/l .
Bty "z = tay 2 Zng =lng oy, Zn, = In, " ,andlet; =t;whenj # ng, k =

J
1,2,...,a.Then
O _ _ a—1 a
reo) = G =B =Bt 10)* =1 = B [T (T = 70)
wherey, = exp(—i2nk/o),k =0,1,...,0— 1. Puttingt,, = ys,th, =thg =+ =1y, =
1, shows thaf[‘]’,:1 thy = Tk has root or7® for k = 0,1, ...,a — 1. From Propositior8
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we know]'[‘;,=1 ta, — c is prime where # 0 is a constant. So any prime factorrat (t))

in variablet has a root orf™*. Clearly any prime factor of(z) must be a product of some
prime factors of-(z(¢)). Hence, due to the equivalenceo& T° andr € T¢, any prime
factor ofr(z) hasarootofs. O

Lemma 10. Let p(z) be a non-zero polynomial; # 0 € Z°, j = 1,2,...,k and
p(2) H’;zl(z(”/)+ — z(=¥)+) be m-closedthen p(z) has no root oril™* if and only if p(z)
is a monomial.

Proof. The sufficiency is apparent and we only need to prove the necessity, (9t=

(zW)+ — z(=v))+). From Propositior, ]_[’;:1 ”;(éﬂ)) is a polynomial and any of its prime
J

ko qi@")

J=1¢;@

hand, from the condition that(z) ]_[';:1 q;(z) is m-closed, we know there is a polynomial

r(z) such that

have no common factor. On the other

factors has a root ofi*. So p(z)and]]

p") l—ll;zl q;(@™) p™) HI;:;L q(j (é’;)
r(z) = > = .
p@[[j219;@ p(2)

Thereforep(z™)/p(z) is a polynomial, that isp(z) is m-closed. From Propositiofy p(z)
must be a monomial. [

2.2. Proof of Theorem 2

The sufficiency part of the theorem is apparent from Len3insn we only need to prove
the necessity.

Based on the fact th3t', B(x — n) is a constant anfb, Theorem 5.1]Jor [9, Theorem
1.1]), we know the shifts ap cannot form a Riesz basis when the order of the homogeneous
differential operato (D) is not zero.

When the order of the homogeneous differential oper&@b) is zero, from Theo-
rem 1, there existM, N € 7Z° such thatp(x) = ZN<”<M apnB(x —n — mL_l),l €
Z°. Let AGR) = Yycpey @2" @A C(2) = Y yccpy @an"TEV then Az) =
=M+ (7). ThereforeC(z) H’;zl(z<”-f)+ — z(=v)+) is a polynomial which isn-closed
becausei(z) ]_[]j-:l(z”f — 1) is m-closed.

Now, let us prove thatvi, v, ..., vx) is unimodular. If it is not unimodular, from

A 2
Lemma3, {B(x —n)},cz+ is not a Riesz basis. Thds, ;s |B(®w + 2nn)‘ has a root.

n 2
Since)_, .7 ‘B(w + Znn)‘ is bounded and continuous, at@(exp(—iw))| is bounded
too, we obtain that

ZnEZS (%(wJFZM)‘Z:lA(Z)'ZZneZS
=I1C@PY .

N 2
B(a)+2nn)‘

N 2
B(w+2nn)‘
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has a root. Thus{¢(x — ”)}nezs is not a Riesz basis, which contradicts the condition
that{gb(x — n)}nezs forms a Riesz basis. So1, v, ..., vg) is unimodular. Furthermore,
{B(x — n)},cz¢ is a Riesz basis from Lemn&

From the above discussion, the sufficient and necessary conditiofgthatn)}, < 7+
forms a Riesz basis is thét(z) has no root oif’*. Because&_ (z) is polynomialm-closed,
from Lemmal0, C(z) is a non-zero monomial, i.e4(z) is a monomial. Sap(x) =
¢B(x —n — —L3), wherec # 0 is a constant. [J
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